""._[

O .

The Impact of Using Effective
Connectivity Measures (Granger
Causality) in Guiding Neurofeedback
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Types of Neural Connectivity

Structural Connectivity
Functional Connectivity
Effective Connectivity

Networks of the Brain

Olaf Sporns

Sporns, O. (2010). Networks of the Brain. MIT press.



Structural Connectivity

A set of physical or anatomical connections
linking neural elements.




Functional Connectivity

Patterns of deviations from statistical independence between
distributed and spatially remote neuronal units. The basis of
this is time series data from neural recordings. Their relation is
taken as neuronal coupling and often takes the form of
correlation, coherence, phase locking or comodulation. There
is no causal relationship, effect or interaction.
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Effective Connectivity

Network and causal effects between neural elements.

Inferred through statistical techniques such as time series analyses
and statistical modeling that assess causality and interaction.

Requires complex data processing and modeling techniques such as
ICA, Partial Directed Coherence and Granger Causality.
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Comparing levels of connectivity
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Review of the methods of determination of directed connectivity
from multichannel data

Katarzyna J. Blinowska
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Is Graph Theoretical Analysis a Useful Tool for
Quantification of Connectivity Obtained by
Means of EEG/MEG Techniques?

Maciej Kaminskit™™ and Katarzyna J. Blinowska'=T

IDepartment of Biomedical Physics. Faculty of Physics, University of Warsaw, Warsaw. Poland

Z|nstitute of Biccybernstics and Biomeadical Engineering of Polish Academy of Sciences. Warsaw. Poland

Figure 1. Comparison of bivariate and multivariate connectivity measures. Top images: connectivity
patterns for slow wave sleep (stage 3/4), (A) obtained using the bivariate measure (SL), (B) obtained
using the multivariate measure (DTF). Although in (A) undirected and in (B) directed connections are
shown, however the main difference between the pictures are: disorganized pattern of connections in

2 (A) and clear-cut pattern of connections compatible with physiological evidence in (B). Bottom images
’ ”0/1‘3‘,:' \\: ‘ —propagation patterns for a simulation which assumes a propagation of activity from electrode 1 to

\ electrodes 2, 3, 4, and 5; (C)—pattern obtained for a bivariate measure (coherence) and (D)—for a

multivariate measure (DTF). For the bivariate connectivity measure, false connections are created

resulting from common driving. (A) Reproduced from Leistedt et al. (2000). (B) Reproduced from Kaminski et al. (1997) (with
permission).




Using quantitative and analytic EEG methods in the
understanding of connectivity Iin autism spectrum
disorders: a theory of mixed over- and under-connectivity

Robert Coben™*, Iman Mohammad-Rezazadeh** and Rex L. Cannon®
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Frontiers in Human Neuroscience wwnw. frontiersin.org February 2014 | Volurme 8 | Article 45 |1
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Exemplar: Major Depression
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Exemplar:

Coherance

EDF file - 1.s epochs resampled

Major Depression
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Novel EEG Analysis pipeline focused on
effective connectivity assessment

EEG data collection
Independent
Components Analysis
Dipole Source
Localization

Multivariate Granger
Causality

Graph Theory Metrics




Journal of Neuroscience o
Methods

Plos One

Computational o)
Intelligence and o)
Neuroscience

Neurolmage o)
Computational

Intelligence and o
Neuroscience

Frontiers in Neuroscience o
Frontiers in Neural
Circuits

UCSD Swartz Center for
Computational
Neuroscience

University of Oxford
UCLA Semmel Neuroscience
Institute

MGH/Harvard Medical
School

Georgetowwn University
Medical Center
University of Michigan
Neuroscience Department



Journal of Neuroscience Methods
Volume 134, Issue 1, 15 March 2004, Pages 9-21
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EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis

Arnaud Delorme & =i, Scott Makeig @

Show more

https://doi.org/10.1016/j.jneumeth.2003.10.009 Get rights and content

Independent Component Analysis
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Example: 25 year old woman with a history of emotional abuse as a child and adult. Presents with anxiety,
panic, nightmares and dissociation.
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Graph Theory Metrics

Freq Range Clust Coeff Path Length Global Eff m
0.031157467 37.27736431 0.044989651 91.9196607




Graph Theory: Network Dynamics

Node © R &
S‘/\\ B High degree 0\ ‘/\i_:/
| \ < N <7 < A

Connector hub o —e
Provindal hub
= \ N

Module lll

TRENDS in Cognitve Sciences

Figure 1. Basic network attributes. (A) Brain networks can be described and analyzed as graphs comprising a collection of nodes (describing neurons/brain regions) and a
collection of edges (describing structural connections or functional relationships). The arrangement of nodes and edges defines the topological organization of the network.
(B) A path coresponds to a sequence of unique edges that are crossed when traveling between two nodes in the network. Low-degree nodes are nodes that have a
relatively low number of edges; high-degree nodes (often referred to as hubs) are nodes that have a relatively high number of edges. (C) A module includes a subset of
nodes of the network that show a relatively high level of within-module connectivity and arelatively low level of intermodule connectivity. ‘Provincial hubs’ are high-degree
nodes that primarily connect to nodes in the same module. ‘Connector hubs’ are high-degree nodes that show a diverse connectivity profile by connecting to several
different modules within the network.



Graph Elements

Hubs: A node with links that exceeds average.
Low vs High Degree Hubs.
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Modules.

Connector Hubs.
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Acta Paediatrica I55N 0803-5253

REVIEW ARTICLE

The functional brain connectome of the child and autism spectrum disorders
Katell Mevel’, Peter Fransson (Peter.Fransson@ki_se)®

1 Labaowratory for the Psychology of Child Development and Education (LaPsyDE), CHRS UMR 2240, Sorbonne Paris Cité, GIP Cyceron, Université de Caen Normandis,
Universite Pans Descartes, Pans, France

2.Deparmtment of Chnical Meuroscience, Karolinska institutet, Stockholm, Sweden

E2016 Foundation Aa Padatica. Published by John Wiksy & Sens Ltd 2016 108, pg. 1024-1035
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Four Channel Multivariate Coherence
Training: Development and Evidence in
Support of a New Form of Neurofeedback

m Robert Coben', Morgan Middlebrooks?, Howard Lightstone? and Madeleine Corbell®

Yntegratad Neuroscience Services, Fayetteville, AR, United States
2EEG Software, LLC. Gainesville. FL. United States
*Department of Psychological Science, University of Arkansas, Fayetteville, AR, United States

QPS: Averaging coherences

B A method of combining averaged psync values.
B 4 channels of EEG

For each channel, the 3 pairs of psync values are computed, averaged and
this is used as the output reward value

B If a raw channel is in artifact condition, the channel is not used in the
averaging calculation

(AB + AC + AD)/3

A
C = (CA + CB + CD)/3
D = (DA + DB + DC)/3
QPS Ave=(A+B+C+
D)/4
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FIGURE 2 | Visual representation of A_Psync filter.
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Efficacy Studies in Support of 4 channel MVCNF (N = 591)

General Population

Traumatic Brain
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Learning

Disabilities

Autism

Autism MND

Depression

Developmental
Trauma
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Improvements in
symptoms and NP
testing

MVCNF > 2 Ch
CNF

MVCNF > 2
ChCNF > RR
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Changes
associated with
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81% reduction in
seizures

1.6 year increase in
reading

98% success rate

Mu suppression
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changes
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Study Methodology

Subjects were assigned to one of three groups (N =45).

These included an effective connectivity (15), functional connectivity
within group (15) and a functional connectivity between group (15)
comparison. Group 1 and 2 were the same subjects (within groups) that
received different interventions at different time points (FC always first).

All subjects received four channel multivariate coherence training over
12-15 sessions.

Clinical ratings and therapist ratings (0-20) were derived at the
completion of their treatment regimen.

Client ratings were largely subjective and based on self-ratings only or
parental ratings at the completion of training and during the process.

Therapist ratings were performed at the completion of training and
were based on objective test findings including neuropsychological,
behavioral and geeg findings that reflected change over time.

QEEG analysis of change included measures of power at the component
level, dipole sources, spectral properties, and multiple measures of graph
theory connectivity.
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Statistical comparisons for demographics across
groups

-

F=0.123 =0.756 X?2=0.304 F=1.82

p=0.884 p=0.685 p = 0.859 p=0.174
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Statistical Analyses of Graph Theory Metrics
(Connectivity)

Analysis of Variance

Cluster Global Path Length Radius Diameter
Coefficient Efficiency

p = 0.654 p=0.016 p = 0.064 p =0.045 p =0.033
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Correlation Matrix

Clinical

Therapist Outcome

Medications Diameter
Improvement Measure

B :
Medications o — 0,142 0,142 0027

p-value — 0.353 0.351 0.862
Clinical Improvement feam” : _ 0.563 0.319
Therapist Outcome Pearson's _ 0242
Measure r

p-value — 0.109

: Pearson's

Diameter : —

p-value —



Conclusions

Measures of effective connectivity can be gleaned from QEEG data.

Effective connectivity guided multivariate coherence training led to
enhanced client and therapist ratings of outcome.

Therapist ratings are consistently higher than clients and show more
significant differences.

Both ratings show an increased likelihood of greater outcomes (> 10)
in the effective connectivity group.

Positive NF outcomes in this group showed greater reductions of
delta/theta, alpha and beta frequencies. These were commonly seen
over bilateral posterior brain regions including temporal locations and
midline frontal locations as well.

Positive NF outcomes were associated with greater changes in
multivariate connectivity. This is especially true for long range
connectivity (diameter).

Use of effective connectivity leads to changes in connectivity and is
more likely to prevent negative connectivity changes.
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