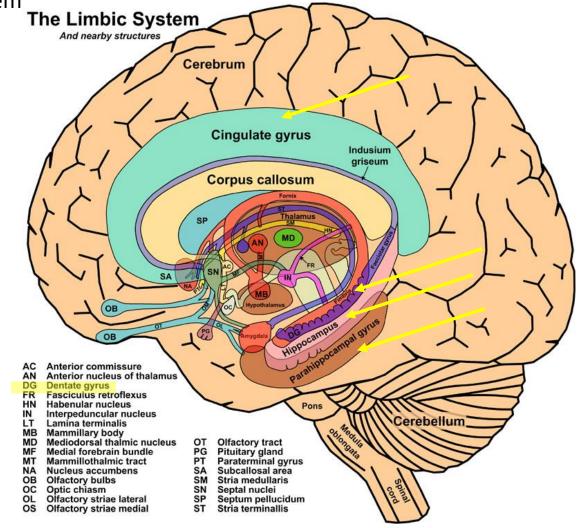
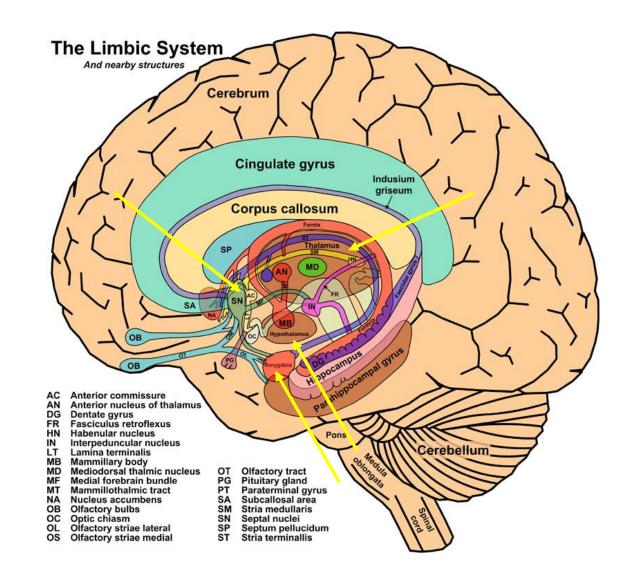

Round 10: The Limbic System Amygdala & Hypothalamus

Kristy Snyder Colling, PhD 02/12/2021

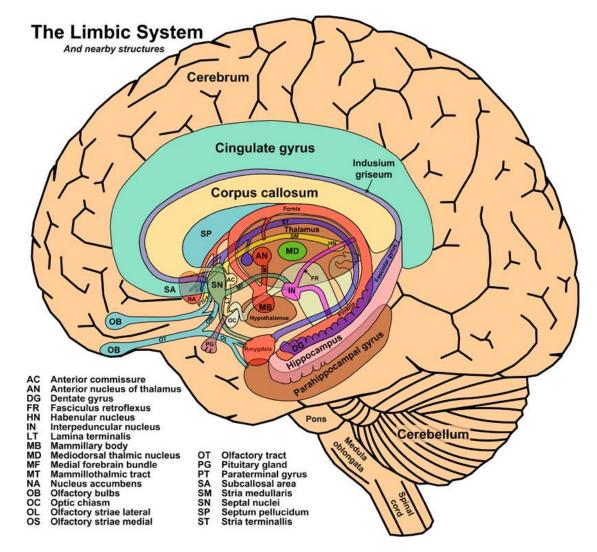
The Limbic System


Functions:

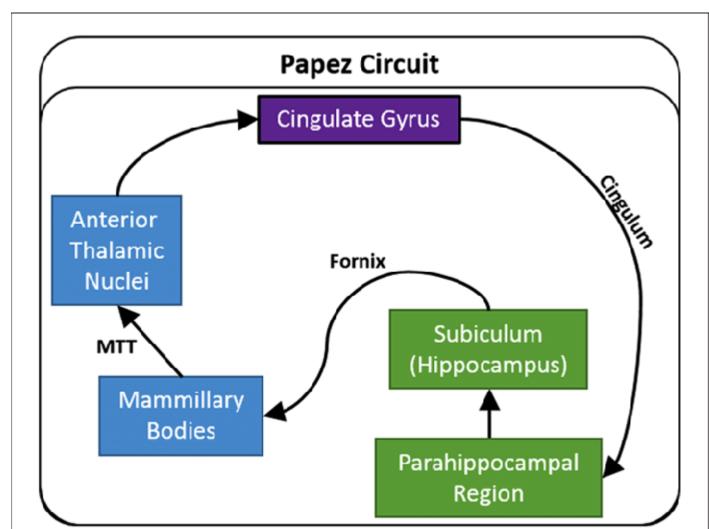
- Smell
- Learning & Memory
- Emotion (e.g., fear, aggression, anger)
- Sexual Behaviors
- Feeding


The Limbic System: Grey Matter Structures

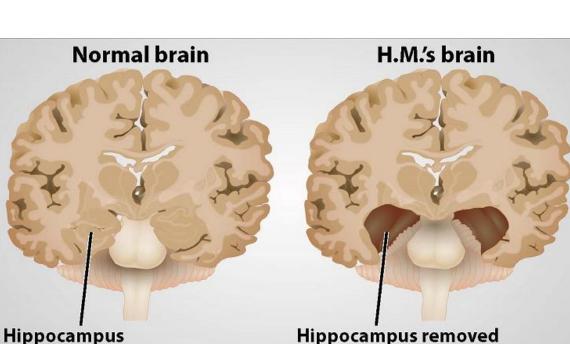
- Limbic lobe
 - Cingulate gyrus memory, emotion, autonomic nervous system
 - Parahippocamal gyrus in the temporal lobe memory
- Hippocampal formation memory
 - Dentate gyrus receives afferent information
 - Subiculum efferent component
 - Hippocampus proper –efferent component


The Limbic System: Grey Matter Structures

- Amygdala
 - Emotions & behavior.
 - Smell emotional responses to smell
- Hypothalamus
- Thalamus
 - Anterior nucleus Memory
 - Mediodorsal nucleus Emotion & Behavior
- Septal area reward pathway
- Habenula reward pathway

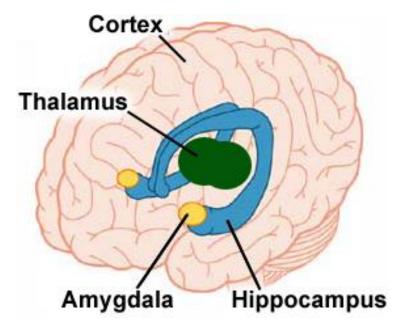

The Limbic System: Olfaction

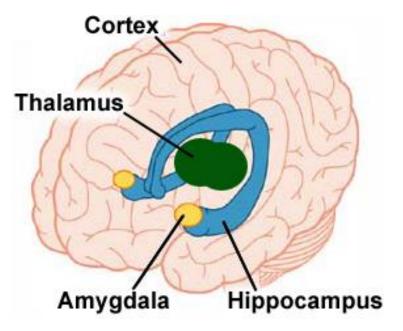
- Olfaction
 - Smell -> olfactory bulb -> olfactory tract -> lateral olfactory striae ->
 - Parahippocampul gyrus (memory of smells)
 - Amygdala (emotions related to smell)


The Limbic System: Memory & Learning

- Memory & Learning
 - Papez Circuit
 - Subiculum -> fornix -> mamillary bodies -> thalamus -> cingulate gyrus
 - Paraphypocampal gyrus -> entorhinal cortex -> hippocampus dentate gyrus -> subiculum
 - Prefrontal cortex involve memory with thoughts & decision making

Hippocampus: HM & Memory


- HM head trauma -> seizures
- 1953 William Scoville neurosurgeon removed HM's Hippocampus
- At the time, thought to be involved in emotions as part of limbic system
- Seizures disappeared, no change in personality, even increase in IQ
- Lost memory of preceding decade & unable to form new memories
- Could remember things in short-term or working memory for about 15 mins by repeating information to himself
- Hippocampus necessary for memory consolidation
- Procedural motor knowledge relies on different mechanisms
 - Trace a star in a mirror performance got better over time even though he could not declaratively remember having done the task before.
 - Procedural memory relies more on basal ganglia and cerebellum
 - Distinction between "knowing that" & "knowing how"



• Functions

- Fear, anger, rage, sadness
- Feeding
- Autonomic functions
- Learning, specifically tasks that require integrating information from different sensory modalities or the linking of a stimulus to an emotional response

- Emotions/emotional responses
 - Amygdala receives information from
 - Prefrontal cortex reasoning, judgement, personality
 - Temporal lobe smell, taste
 - Insula visceral sensation
 - Auditory association
 - Posterior association area somatosensory, vision, auditory
 - Amygdala sends info to septal area & hypothalamus (autonomic nervous system)
 - Hypothalamospinal tract -> sympathetic organs autonomic response to fear
 - Liver increase glucose production -> more energy for muscles
 - Heart increase heart rate/blood flow
 - Increase blood pressure
 - Lungs increase respiratory rate
 - Stimulate pituitary to release cortisol

• Charles Whitman

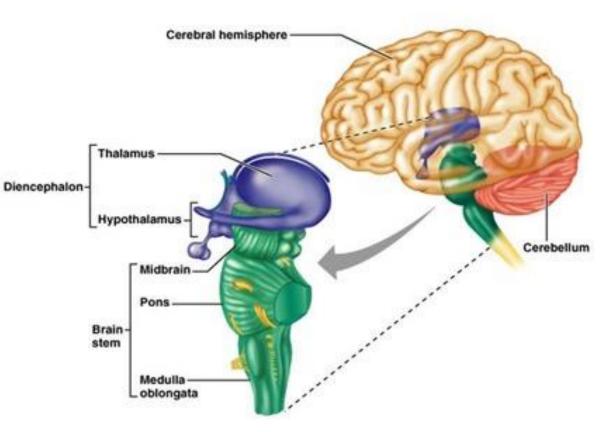
- Texas Tower Sniper (August 1, 1966)
 - Killed wife & mother with knives
 - Just under two hour rampage
 - Killed 3 people in the tower
 - Sniper killed 11, wounded 31
 - +1 died 35 years later from injuries
- 1965 complained of headaches and violent impulses
- Suicide note asked for a brain autopsy because he thought something was wrong with him
 - tumor pressing on the amygdala

- Innate Fear evolutionarily beneficial
 - Rats are afraid of cat urine even if they have never seen a cat
- Learned Fear
 - Tone elicits no amygdala response
 - Pair that with a shock and eventually the tone will elicit an amygdala response (conditioning)
- Social Justice
 - Lesion naive trusting
 - Otherwise more vigilant and can better determine if you are being treated fairly -> aggression

The Amygdala & Autism

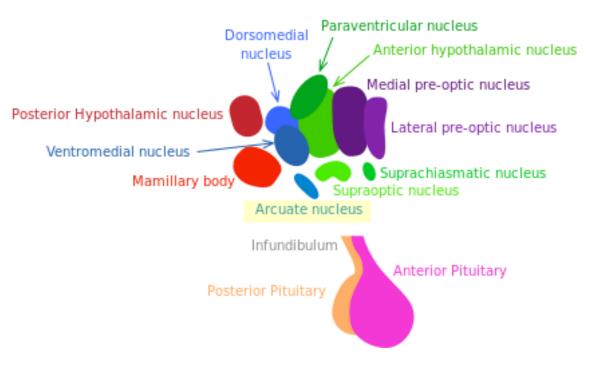
- Emotion plays a large role in social function
- Damage to amygdala in dominate monkey -> falling off social hierarchy
- People with damaged amygdala have social behaviors that look like autism (e.g., avoid eye contact, difficulty judging facial expressions
- Autistic individuals:
 - amygdala grows usually fast in children making it larger than usual but then it stops growing or even shrinks in adults
 - Studies shows less amygdala activation when evaluating facial expressions but more activation when evaluating the eye area
 - Weak connections between amygdala and hippocampus correlated with most sever autistic traits
 - Connections between amygdala and prefrontal cortex weaker in autistic individuals less able to regulate emotions

The Amygdala & Developmental Trauma

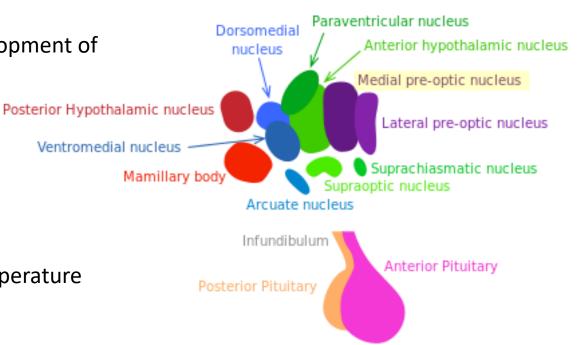

- Trauma sudden intense surge of anxiety secondary to some external event that exceeds the subject's ability to cope with and to defend against
- Traumatic experiences -> significant structural and functional changes in brain regions implicated in emotional and cognitive processing (i.e., medial prefrontal cortex, anterior cingulate cortex, hippocampus, and amygdala)
- Amygdala mediates the acquisition and expression of conditioned fear and the enhancement of emotional memory
- Childhood trauma -> increased amygdala volume.
- Adulthood trauma -> decreased amygdala volume
 - PTSD, MDD, BPD associated with reductions in amygdala volume (adult)
- Excessive amygdala activity to emotionally negative stimuli -> associated with trait anxiety, PTSD, and MDD
- Positive correlation between physical abuse & right amygdala activity
- Excessive amygdala activity -> mediator between childhood trauma and the development of trauma-related psychiatric (e.g., PTSD and MDD).

The Amygdala & Developmental Trauma

- Functional connectivity between the amygdala and the prefrontal cortex -> emotion regulation.
 - conditioning
 - extinction of memories of traumatic fear.
- Prefrontal cortex regulates stress-induced fear and anxiety via inhibitory effects on amygdala activity
- Strength of the anatomical amygdala-prefrontal pathway predicts lower levels of normal trait anxiety
- Trauma-related psychiatric disorders -> structural and functional disconnection between the amygdala and the
 prefrontal cortex
 - Effective interactions between these two brain areas are needed for healthy outcomes of traumatic experiences.

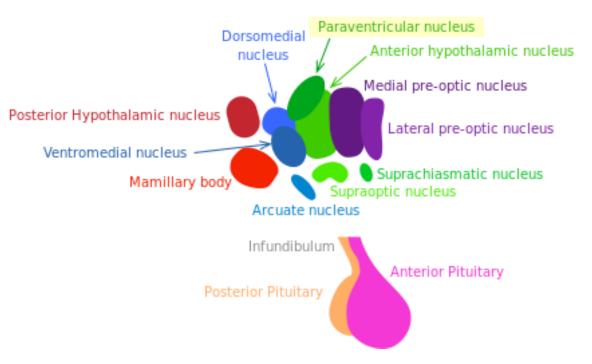

The Hypothalamus

- Part of diencephalon
- Function: Control internal environment (i.e., homeostasis)
 - Endocrine system (Hormones)
 - converts neural information to hormonal information
 - Also acts on CNS
 - Hormonal effects can be fairly slow -> longterm regulation of synaptic effectiveness that modify mood & behavioral states
 - Autonomic nervous system
 - Sympathetic (i.e., Fight/flight)
 - Parasympathetic (i.e., Rest/Digest)
 - Neural system concerned with motivation stimuli result in different responses based on internal state
- Direct Route -> endocrine system & autonomic nervous system
 - Example: cold room -> peripheral vasoconstriction
- Indirect Route -> motivate to act on environments
 - Example: cold room -> Close a window, turn up the heat

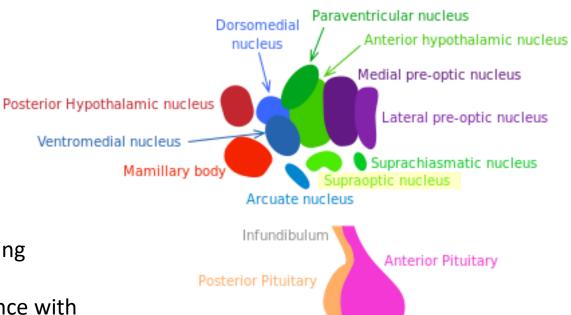


Arcuate Nucleus

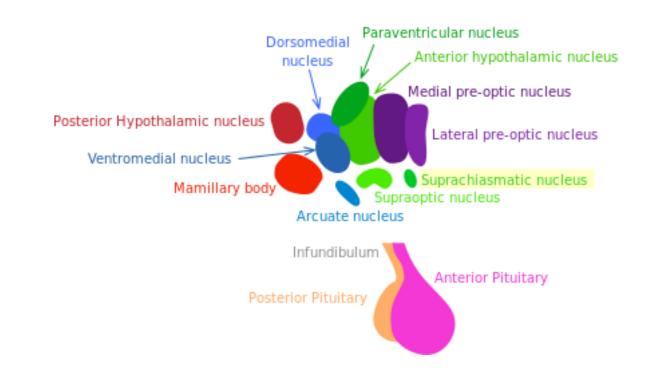
- Releasing & Inhibiting factors into pituitary
 - Growth hormone
 - Cortisol precurser
 - Prolactin
 - Thyroid hormone



- Medial Preoptic Nucleus
 - Gonadotropin -> Follicle stimulating hormone /Luteinizing hormone
 - Female
 - FSH Estrogen production
 - LH Progesterone production
 - prepare the uterus for implantation & development of placenta
 - Male
 - FSH Sperm production
 - LH Testosterone
 - Role in Temperature regulation
 - Panting vs shivering
 - May play a role in fevers setting a different temperature "setpoint" to regulate

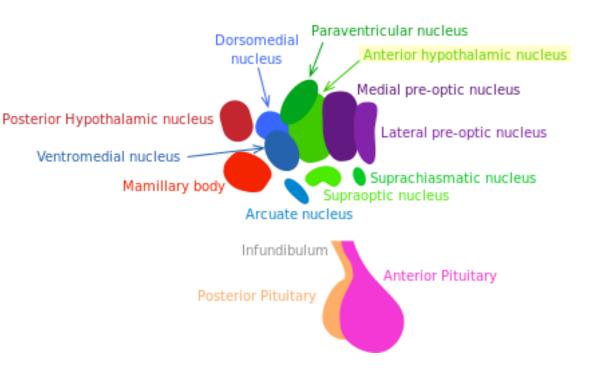

Paraventricular Nucleus

- Release oxytocin
 - Women
 - Suckling -> milk ejection
 - Also communications with higher centers -> sight or sound of baby crying also induces milk release
 - Stress inhibits milk release
 - Uterine stretch -> uterine contraction (labor)
 - Men
 - Sexual drive, orgasm & increase blood flow to penis

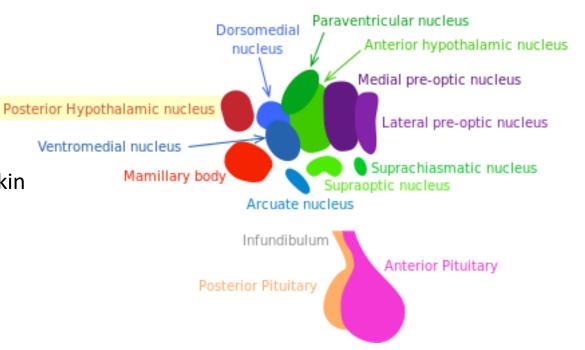


• Supraoptic Nucleus

- Response to water balance –> decreased water & increased solutes stimulate
- Release Vassopressin
 - acts on blood vessels ->
 - vasoconstriction increase blood pressure
 - kidneys increase water reabsorption
 - Cold inhibits vasopressin (urinate more)
 - Heat stimulates conserve water more used for sweating
 - Release of vasopressin also linked to counteracting fevers
 - May also play a role in convulsions experience with very high fevers

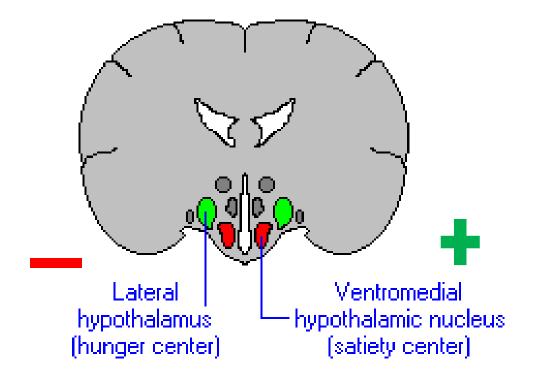


- Superchiasmatic Nucleus
 - Circadian rhythm sleep/wake cycle
 - Light hits retina -> optic nerve -> retinohypothalamic tract -> pineal gland -> [darkness] release melatonin


Hypothalamus: Autonomic Nervous System

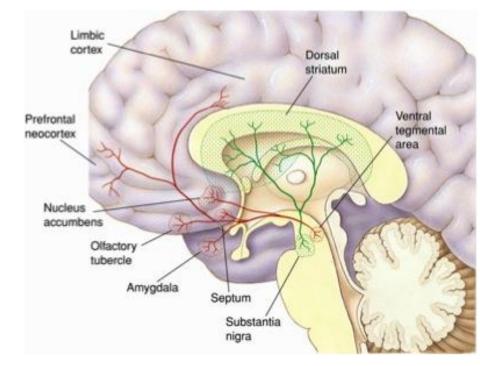
- Anterior Hypothalamic Nucleus
 - Parasympathetic Nervous Rest & Digest
 - Descends to
 - brain stem
 - CN III Pupillary constriction
 - CN VII & IX- Salivatory glands
 - CN X Vagus
 - spinal cord S2-S4
 - Reticular formation Arousal
 - Thermoregulation
 - Cool down -> decrease body temp
 - Vasodilation bring blood close to the surface to radiate heat out the skin
 - Stimulate sweat glands evaporative cooling

Hypothalamus: Autonomic Nervous System

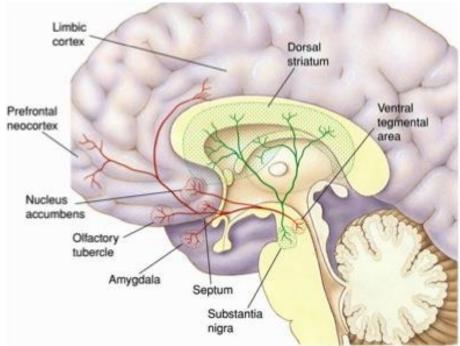

- Posterior Hypothalamic Nucleus
 - Sympathetic Fibers Fight/Flight
 - T1-L2
 - Thermoregulation
 - Warm up -> increase body temp
 - Vasoconstriction bring blood away from skin & to internal organs
 - Shivering generate heat

Hypothalamus: Feeding Behavior

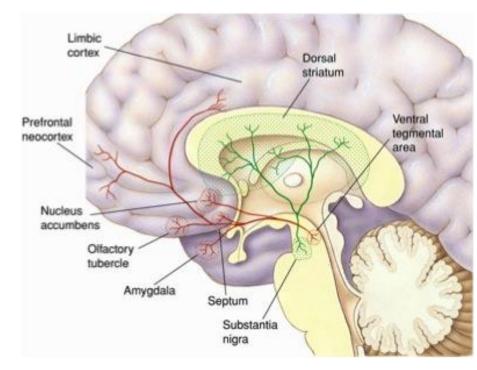
- VentroMedial Nucleus (VMN) satiety
 - damage leads to obesity
- Lateral Hypothalamic Nucleus (LHN) hunger
 - damage in infants -> failure to thrive
 - adults -> anorexia ?


- Adipose tissue increase in fat storage -> release leptin
 - stimulates VMN, inhibits LHN
- Pancreas high glucose levels -> produce insulin
 - stimulates VMN, inhibits LHN
- GI tract food distends/stretch -> Vagus nerve (CN X) -> hypothalamus
 - stimulates VMN, inhibits LHN
- Stomach fasting -> Ghrelin
 - inhibits VMN, stimulates LHN

Addiction Cycle


• 3 stage cycle

- Binge/Intoxication
 - Consume substance, experience reward/pleasurable effects
- Basal Ganglia
 - Reward/pleasure, dopamine, & habit formation
 - Enable substance-associated cues to trigger substance seeking (i.e., increase incentive salience)
 - Nucleus Accumbens Links stimulus with response
 - motivation, experience of reward
 - Release glutamate excitatory neurotransmitter
 - Release of dopamine & Brain's natural opioids
 - Associate people, places, drug paraphernalia, moods with rewards -> triggers
 - Dorsal Striatum habit formation, routine behaviors


Addiction Cycle

- 3 stage cycle
 - Withdrawal/Negative Affect
 - negative emotions in response to substance absence
 - As sensitivity to the reward system reduces with continued use -> increases stress
 - Release of Corticotropin-releasing factor (cortisol) & norepinephrine
 - Blocking stress receptors reduces seeking behaviors
 - Amygdala Stress & emotions related to withdrawal
 - Reduce sensitivity of pleasure/reward
 - Hypothalamus hormone production response to stress
 - Heighten activation of stress systems

Addiction Cycle

- 3 stage cycle
 - Preoccupation/Anticipation "Craving"
 - Substance seeking after period of abstinence (may be short as hours)
 - Prefrontal Cortex
 - Reduce executive control function responsible for regulating one's actions, emotions, and impulses
 - Smaller volume in abstinent, previously addicted individuals predicts shorter relapse time
 - Reduced prefrontal control over amygdala in PTSD

Limbic System Syndromes

- Kluver-Bucy Syndrome bilateral damage to amygdala
 - Placidity no reaction to fear or anger
 - Hyperphagia over-eating
 - Hypersexual
 - Amnesia
- Wernickes Encephalopy B1 deficiency
 - Damages mamillary bodies (memory pathway)
 - Confabulation fill memory blanks with made up things
 - Ataxia
 - Ophthalmoplegia

Thank You

The Amygdala & Developmental Trauma

https://www.intechopen.com/books/the-amygdala-a-discrete-multitaskingmanager/traumatic-experiences-disrupt-amygdala-prefrontal-connectivity