Round 12: Association Cortices, Higher-function Localization, & Hemispheric Asymmetries

02/26/2021 Kristy Snyder Colling, PhD

Phrenology

- Popular from 1810-1840
- Franz Gall 1819:
 - Brain is the organ of the mind
 - Bain is not a homogenous unity, but an aggregate of mental organs with specific functions
 - Relative size of organ indicative of power/strength
 - Skull ossifies over brain during infant development, so external craniological means could be used to diagnose the internal states of mental characteristics

- Primary/Idiotypic basic processing of most elemental input (e.g., lines)
- Secondary/ Modality-Specific Unimodal
 Association elaborative processing (e.g., shapes, objects)
- Association/High-Order Heteromodal –
 Integrative processing (i.e., how you feel about an object, memories of the object)

Heteromodal Areas

Heteromodal Area Characteristics

- Neural responses are not confined to any single sensory modality
- Predominate sensory inputs come from unimodal areas in multiple modalities and other heteromodal areas
- Deficits from lesions in these area are always multimodal and never confirmed to tasks under guidance of a single modality
- Many neurons respond to both sensory & motor input
- Firing changes depending on motivational relevance

Transmodal Regions

Integration of sensory input into cognition

Temporal Heteromodal Cortex

- Exposure to unfamiliar faces activates the fusiform face area
- Exposure to familiar faces also activates lateral midtemporal cortex (transmodal region)
 - Links visual representation of faces -> associations (e.g., name, voice, personal recollections)
 - Holistically leads to recognition

temporal pole

Temporal Heteromodal Cortex

Associative Prosopagnosia

- Damage to bilateral, mid-anterior lingual & fusiform gyrus
- Can determine if two faces are the same or not
- Cannot recognize a specific face relate stimulus to personal experience
 - Face can elicit an emotional response
 - Can recognize when given different stimulus (e.g., voice)
- May also have trouble recognizing specific members of a group (e.g., a favorite pet, a particular car)

Associative Visual Object Agnosia

- Cannot recognize object categories, describe its nature, or use
- Can determine if two objects are perceptually identical

Temporal Heteromodal Cortex

Hemispheric Differences

- Prosopagnosia can also occur when there is a unilateral right hemisphere lesion
- Object agnosia is more likely when there is a unilateral left hemisphere lesion
- Right hemisphere -> role in activation of autobiographical memories

Other associative agnosias

- Auditory object agnosia cannot match sound (e.g., ring, siren) with object (e.g., telephone, ambulance)
- Phonagnosia cannot identify familiar voices

Locus & Implications

- The primary processing areas are intact -> elementary processing is unaffected
- Transmodal areas, such as the heteromodal middle temporal gyrus is damaged
 - Not a repository for knowledge related to faces, objects
 - Pathway for accessing relevant distributed associations that collectively lead to recognition

Temporoparietal Transmodal Region

- Language -> elaboration & communication of experiences and thoughts through arbitrary symbols (e.g., sounds/speech, figures/text)
- Wernicke's and Broca's areas are anchors of a language network

Wernicke's area

- Transmodal gateway that coordinates reciprocal interactions between sensory representations of word forms & arbitrary (symbolic) associations that give meaning
- Damage does not affect word representations themselves but affects ability to understand/decode words in any modality (spoken, written)
- Deficit in comprehension & production

Temporoparietal Transmodal Region

- Pure Alexia (Word Blindness)
 - Areas that encode visual word forms are disconnected from visual input or cannot communicate with Wernicke's area
 - Typically lesion in Splenium of corpus callosum

Interferes with transfer of visual information from intact visual processing areas of the right

hemisphere to the word-form areas in the left hemisphere

 As with associative agnosias, the problem is in linking raw sensory input with relevant, integrated knowledge that gives meaning to stimuli

Posterior Parietal Heteromodal Area

Role in Spatial Attention

- Intraparietal cortex integrates distributed spatial information
- Damage:
 - Modality specific information channels related to extrapersonal space are intact
 - Cannot be bound into a coherent & interactive representation necessary to adaptive deployment od spatial attention
- Not a spatial map but critical gateway for access & integrating information re: attention & exploration of extrapersonal space
- Right hemisphere damage related to difficulties in mental rotation & identification of objects viewed from uncommon perspectives

Balint's Syndrome

- Breakdown of visuospatial integration
- Inability to make voluntary eye movements to a point in space even though spontaneous eye movements are unaffected
- Deficit in using visual guidance to grasp and object
- Difficulty attending to visual stimuli

Posterior Parietal Heteromodal Area

Ideomotor Apraxia

- Inferior Parietal lobe -> spatiotemporal representations of skilled movements
- Damage: Unable to pantomime the use of an object or infer the nature of the object

Gerstmann's Syndrome

- Left/right confusion
- Finger Agnosia inability to name a specific finger when it is touched
- Dysgraphia
- Dyscalculia

Posterior Parietal Heteromodal Area

Role in Mood & Motivation

- Motivation indifference for contralateral hemisphere
- Right hemisphere lesion can lead to psychotic and affective disturbances
- Wernicke's aphasia pts can show severe mood alterations:
 - Anger
 - Paranoia
 - Indifference
- May be related to damages sensory-limbic interactions

Prefrontal Heteromodal Area

- Comprised of Brodmann's areas 9, 10, 11, 12, 45, 46, 47
- Orient attentional focus toward internal mental processes
- Weigh consequences of future actions and to plan accordingly
 - Select appropriate motor response from many available options
- Two functional centers
 - Working memory/Executive function/Attention
 - Comportment (behavior)

Prefrontal Heteromodal Area

Frontal Lobe Syndrome

- Childish, profane, careless, facetious, grandiose, and easily angered
- Lose spontaneity, curiosity, and initiative and develop an apathetic blunting of feeling, drive, mentation, and behavior
- Lack of foresight, judgment, and insight, and lose the ability to delay gratification
- Loss of capacity for remorse
- Impaired abstract reasoning, creativity, problem solving, and mental flexibility
- Lose ability to plan/sequence complex behaviors, strategic decision making based on the assessment of differential risks, flexibly shift focus, follow multistep instructions

Phineas P. Gage

- September 13, 1848
 - Railroad accident sent tamping iron through his head
 - At time of accident, some convulsions but was sitting up and talking 30 mins after, "Doctor, here is business enough for you."
 - Vomited, pushing teacup full of brain up the top of skull
 - In and out of comma 1st month
 - April 1849, mostly recovered physically
 - August 1852 long-distance stagecoach driver in Chili
 - 1860 epileptic seizures, died in May
 - Prior to accident: Smart, likeable, efficient, capable, reliable.
 - Immediately after the accident: Fitful, irreverent, profane, impatient, obstinate, impulsive
 - Stagecoach work
 - Highly structure, required clear sequences of tasks, foresight, planning, adaptation
 - Harness & care of horses, load & unload luggage, charge fares, route rough frequently dangerous

Monkey Studies

Principle Sulcus

- Function: Strategic planning for higher motor actions & cognitive tasks requiring spatial information
- Lesion: Impairs ability to perform task involving delayed spatial response
 - Task
 - Two containers, one of left & one on right. Monkey watches food being placed in one. Delay of <5 secs, lesioned monkeys cannot perform task
 - Deficit in working memory requiring spatial information
- Cellular studies
 - Some neurons fire when a cue is presented and continue to fire throughout delay
 - Specific neurons fire only when stimuli at particular position in visual field
 - Map of contralateral visual field for use in working memory to direct eye & hand movements

Monkey Studies

- Inferior Prefrontal Convexity
 - Function: Choose among response options via different sensory cues
 - Lesion: Interfere with tasks that require inhibition of certain motor responses at appropriate times
 - Task

 Move to left when auditory stimulus comes from above vs move to right when it comes from below

Orbitofrontal Cortex & Cingulate Gyrus

- Lesions affect affective responses
 - Lesioned monkeys fail to exhibit typical rage when they do no receive expected reward
 - Electrical stimulation affects autonomic responses
 - Blood pressure, pupil dilation, salivation, gastrointestinal contractions

Lobotomy

- 1935 John Fulton noted calming effect of frontal cortical lesions in chimpanzees
- Egas Moniz, a Portuguese neuropsychologist attended meetings and suggested severance of frontal-limbic association cortex in humans for treatment of severe mental illness, specifically Schizophrenia
- Early results showed favorable results ...
- However, soon adverse complications
 - Epilepsy, personality changes lack of inhibition & initiative/drive

Lobotomy

Fig. 17. Schizophrenic boy eight years old, who had to be caged in the basement because of his wiolent behavior. (a) Before lobotomy. (b) A year after lobotomy; no longer dangerous.

Lobotomy & IQ

- Conventional tests of intelligence appeared to show little effect
 - ? -> Frontal lobe assumed to be responsible for abstract thought & reasoning
- Show deficits in specific tasks
 - Wisconsin card sorting task
 - Perseverate & cannot adjust strategy
 - Verbal naming from memory
 - Reduced spontaneity of behavior

Hemispheric Asymmetries

- Size differences (present even in human fetuses)
 - Planum Temporale region that includes Wernicke's area
 - Of 100 brains
 - 65% larger left
 - 11% larger right
 - 24% approximately equal

Hemispheric Asymmetries

Sodium Amytal Tests

- Neurosurgical procedure to determine which hemisphere responsible for language
- Sodium Amytal (Barbiturate) is injected to left/right carotid artery. Patient counts or speaks aloud, once drug starts working pt no longer speaks or responds to commands
- All right-handed -> left hemisphere speech
- Most left-landed -> left hemisphere speech. 15% have right-hemisphere speech, some have speech in both hemispheres
- Affects on mood
 - Left injections tend to produce depression
 - Right injections tend to produce euphoria

Hemispheric Asymmetries

- Tachistoscope Experiments
 - Tasks
 - Visuospatial recognize face
 - Verbal recognize word
 - Results
 - Right-handed subjects perform
 - Verbal task better when stimuli <u>presented on right</u> side (<u>processed by left</u> hemisphere)
 - Spatial tasks better when stimuli <u>presented on left</u> side (<u>processed by right</u> hemisphere)
 - Dichotic Auditory Experiments
 - Task
 - Auditory stimuli played simultaneously to both ears
 - Results
 - Right-handed subjects perform
 - Right ear better for verbal material
 - Left ear better for nonverbal (e.g., music recognition)

Split Brain

- Sever the corpus collosum & anterior commissure to prevent spread of epileptic seizures
- Each hemisphere is capable of functioning independently
- Right hemisphere is generally mute, cannot communicate experience verbally
 - Limited ability to perform tasks that require complex reasoning or analysis
- Patients usually perform well in everyday life because all information is being presented to both hemisphere
- In experiments, when presenting to one visual field vs the other
 - Right visual field -> patient can name stimulus
 - Left visual field -> pick out picture

Right Hemisphere Specialization

- Complex and nonlinguistic perceptual tasks (e.g., face identification)
- Spatial distribution of attention
- emotion and affect
- paralinguistic aspects of communication
 - Right hemisphere: Emotional prosody
 - Left hemisphere: Phoneme production, word choice, syntax, grammar
- Dichotic listening left ear (right hemisphere) advantage for pitch and melody identification
- Tachistoscopic experiments left visual-field (right hemisphere) superiority for depth perception, spatial localization, and identification of complex geometric shapes
- Mood
 - Coordinate nearly all aspects of emotional expression (affect) & experience (mood)
 - Express & Interpret emotion in speech prosody, facial expressions, gesture
 - Sexual pleasure
 - Right temporolimbic seizure foci -> mood disturbances
 - Left temporolimbic seizure foci -> ideational disorders

Right Hemisphere Specialization Parietal Association Area

- Lesions to non-dominant hemisphere (usually right)
 - Neglect Syndrome Lack of appreciation of the spatial aspects of all sensory inputs from left side of body and external space
 - Completely ignore left side of body (e.g., won't wash or dress that side)
 - If arm or leg is passively moved into field of vision, deny ownership
 - Only draw half of objects
 - Right homolog of Wernicke's area
 - Failure to appreciate aspect of verbal message conveyed by the tone, loudness, and timing

Dorsal Parietofrontal Network: Spatial Orientation

- **Epicenters:** Intraparietal sulcus, frontal eye fields, cingulate gyrus
- Parietal component -> perceptual representation of behaviorally relevant locations & their transformations into targets for attentional actions
- Frontal Component -> Choosing & sequencing exploratory & orienting movements
- **Cingulate Gyrus** -> Distribution of effort & motivation
- Damage: Deficits of spatial attention & exploration

Limbic Network: Memory & Emotion

- Epicenters: Hippocampal-entorhinal complex & amygdala
- **Hippocampal-Entorhinal Complex** -> Memory & learning
- Amygdala -> Drive, emotion, visceral tone
- Damage:
 - Deficits of memory
 - Emotion
 - Affiliative behaviors (i.e., social interactions that function to reinforce social bonds)
 - Autonomic responses

Perisylvian Network: Language

- **Epicenters:** Broca's & Wernicke's
 - Also, striatum, association areas of frontal, temporal, & parietal lobes
- **Broca's** -> Word choice, syntax, grammar
- Wernicke's -> Lexical, semantic
- Damage: aphasia, alexia, agraphia

Ventral Occipitotemporal Network: Face & Object Recognition

- Epicenters: Middle Temporal gyrus, temporal pole, fusiform gyrus, inferior temporal gyrus
- Damage: object agnosia, prosopagnosia
 - Usually to fusiform gyrus bc of its vascular supply

Prefrontal: Executive Function & Comportment

Epicenters:

- Prefrontal heteromodal cortex & orbitofrontal -> Comportment
- Prefrontal heteromodal cortex (Dorsolateral prefrontal) & Posterior Parietal cortex, Caudate nucleus, mediodorsal thalamus-> working memory & Related executive function

Thank You