Round 16 Attention: Confusional States, Neglect, & ADHD

Kristy Snyder Colling, PhD 03/25/2021

What is Attention?

- There is a limit
 - to the number of stimuli that can be acted on
 - due to physical constraints of effectors
 - to what can be consciously processed at a given moment in time
 - consciousness is slow, emergent and requires involvement from disparate brain regions
 - some stimuli need to be chosen at the expense of others.
- Where is the selector?
 - At first it was believed to at very low levels in the brainstem
 - Cocktail party effect
 - Selection/relevance depends on many factors
 - Network including neocortex, thalamus, brainstem
- Attentional modulation is inferred when <u>identical events</u> elicit <u>different responses</u> within <u>different contexts</u>
 - Reflected in alterations in selectivity, intensity, and duration of neuronal responses

Aspects of Attention

- Arousal
 - Level of responsiveness
- Orientation
 - Alignment of sensory organs
- Selective attention
 - Preference for some stimuli over others
 - Determines the contents of consciousness.
- Sustained attention
 - Vigilance, concentration
- Divided attention
 - Heeding of several events simultaneously
- Exploration
 - Searching a scene for specific stimuli

Problems Attention Solves

Cognitive processes

- Detecting motivational salience
- Compiling mental representations
- Planning search strategies
- Volitional shifting of attention from one target to another
- Rapid detection of deviance from uniformity
 - E.g., Something comes into the roadway unexpectedly
- Anticipation
 - E.g., Searching or orienting for missing or expected items

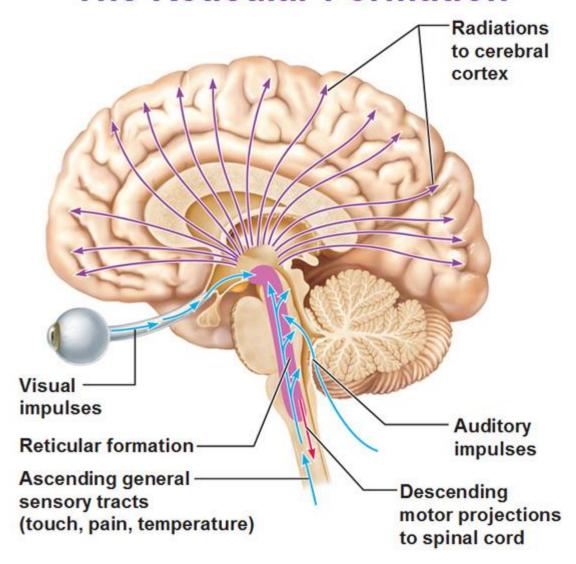
Coordinate transformation

 Visuospatial attention must translate retinocentric information to body-centered spatial frames of reference so they can be targeted for action

Attentional Matrix

The Reticular Formation

Bottom-up


- Stimulus driven
- Mediated by Ascending Reticular Activating System (ARAS)

Top-down

- Goal driven
- Mediated by cerebral cortex, frontal lobes

Reflected in

- Detection efficacy
- Focusing power
- Concentration span
- On-line processing capacity
- Signal-to-noise ratio

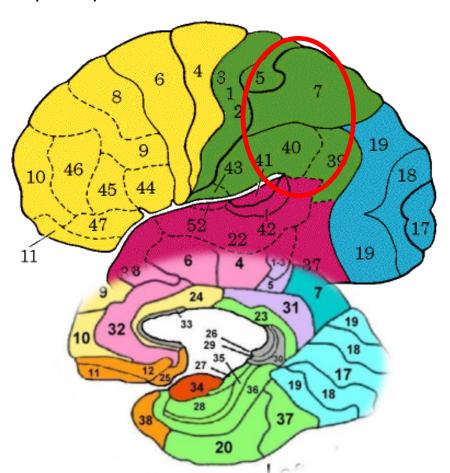
Bottom-Up Components

- Ascending Reticular Activating System (ARAS)
 - Exerts domain-independent global influence on attentional modulation
 - Arousal level
 - Pacemaker for EEG rhythms in brainstem reticular formation, thalamus, and nucleus basalis
 - Activation is necessary but not sufficient for wakefulness & attentiveness
 - Fine tuning of attentional tone during wakefulness
- Reticular nucleus -> <u>attentional valve</u> regulates thalamocortical transmission via integrated influence of the cortex & brainstem

Bottom-Up Components: Neurotransmitters

- Projection from brainstem to thalamus is mainly cholinergic
 - Activation promotes transfer of information from the thalamus to the cerebral cortex
 - Modulates signal-to-noise ratios during attentional focusing and sensory discrimination
- <u>Serotonin</u> agonist reduce distractibility
 - May modulate sensory gating of behaviorally relevant cues in the environment
- <u>Dopaminergic</u> of substantia nigra-ventral tegmental areas
 - Selectively responsive to motivationally relevant stimuli & to cues that signal their existence

Top-Down Components

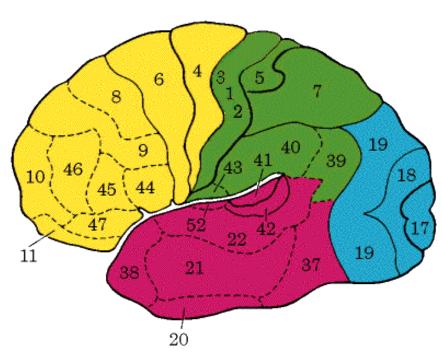

- Parietal, limbic, prefrontal cortices mediate top-down modulation of attentional responses
 - Sensitive to context, motivation, acquired significance, & conscious volition
- Prefrontal & posterior parietal cortices exert top-down influence on all types of domain-specific attentional modulation -> mediates the volitional regulation of attentional focus
- Working memory
 - On-line maintenance of information.
 - Prefrontal cortex & posterior parietal cortex
 - Active manipulation of that information "central executive"
 - Prefrontal dorsolateral cortex
 - Prefrontal neurons
 - Play a critical role in protecting the contents of working memory from distraction
 - Become active when A is presented in an ABCDA paradigm and stays active until the reappearance of the cue

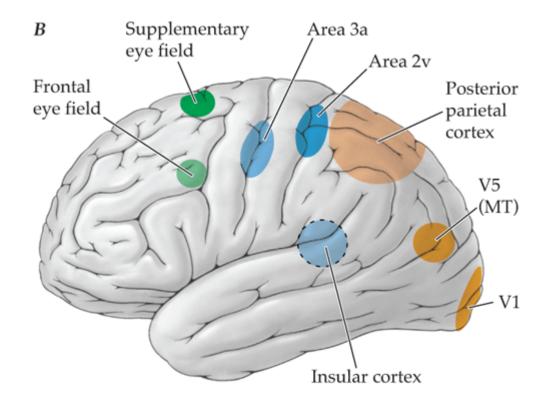
Motivation

- <u>Limbic system</u> induces widespread attentional modulations that <u>modify the impact of sensory events</u> according to their <u>emotional and motivational salience</u>
 - Mood & motivation strongly influence the allocation of attentional resources
 - Degree of hunger enhances the response of orbitofrontal taste area to food items
- Prefrontal & Parietal regions mediate effect of motivation
 - Identical sensory stimuli elicit different responses from lateral prefrontal neurons when their relationships to reward are altered
 - Dorsolateral prefrontal activity greater when viewing a preferred food item relative to less preferred
 - Posterior parietal region increases firing when look at food when hungry and liquid when thirsty

Parietal Component

- Posterior parietal cortex situated at the confluence of visual, auditory, somatosensory, and vestibular unimodal areas
- Well positioned to mediate sensory-motor & cognitive integration necessary for spatial attention
- Four components:
 - Superior Parietal Lobule
 - Somatosensory association cortex BA 5 & anterior BA 7
 - Heteromodal Cortex posterior BA 7
 - Inferior Parietal Lobule
 - Supramarginal and Angular gyri BA 39 & 40
 - Heteromodal Cortex
 - Intraparietal Sulcus
 - Sensory-motor anterior
 - Visuospatial posterior
 - Most closely associated with neglect
 - Medial Parietal Cortex
 - Somatosensory association cortex BA 5 & 7 (anterior)
 - Heteromodal cortex BA 7 & 31 (posterior)


- Lateral Intraparietal Sulcus (LIP)
 - "Posterior eye field" critical role in coordinating eye movements
 - Triggers eye movements in response to stimulation
 - Gives directionally tuned responses prior to saccadic eye movements directed to visual targets or remembered locations
 - Brings auditory and visual information into a common frame of reference to promote holistic sense of a single dimension


• 7a

- Encodes attentional factors
- Activation does not depend on color, shape, orientation, identity, or location but is mediated by reward value
- Role in encoding map of salience that is used by LIP to generate motor plans
- Both areas important for coordinate transformations -> remapping of information from retinotopic to egocentric
 and spatial coordinates
 - LIP mostly involved in creating body-centered representation based on proprioception
 - 7a involved in creating a world-centered representation based on vestibular input and environmental landmarks

- BA 5, medial portion of parietal cortex
 - Role in spatial attention relevant for reaching, grasping, tactile search and manual exploration
 - Somatosensory receptive fields directionally tuned in arm and body centered coordinates
 - Related to stimulus significance and motor planning rather than actual execution of the movement
 - Active during latency between cue and presentation and response, indicating relationship to thinking of a motor plan

- FEF mainly motor, overt attention shifts, also active in covert shifts
 - FEF projects to premotor, striatum, superior colliculus, and subthalamic nucleus
 - Direct access to pathways that control head, eye, and limb movement necessary for scanning and exploration of space
 - FEF may be profoundly influenced by (and also probably profoundly influences) visual information at a relatively early stage of analysis
 - Receives auditory input -> mediate orientation to auditory stimuli
 - Receives extensive input from limbic areas (cingulate cortex)
 - Important in directing exploratory movements toward motivationally relevant segments of extra personal space
- Supplementary Eye Field (SEF)
 - Motor action fields defined relative to object-centered coordinates

Source: John H. Martin: Neuroanatomy Text and Atlas, Fourth Edition, http://neurology.mhmedical.com Copyright © McGraw-Hill Education. All rights reserved.

- Relationship between frontal and parietal nodes of attentional network
 - Sensory representations (parietal) necessary for guiding exploration (motor-frontal), exploration necessary for updating representations
 - FEF & posterior parietal have common connections
 - Ensure that both get the same information
 - Rapidly survey vast information related to motivational salience, spatial representations, and motor strategies
 - Supports parallel processing

- Relationship between frontal and parietal nodes of attentional network
 - Posterior Parietal
 - Not a repository for multimodal spatial map but critical gateway
 - links distributed channels of spatially relevant information with each other and with multiple channels of motor output related to orienting, reaching, grasping, scanning, exploration
 - Sculpts salience and trajectory-based template of extra personal space
 - FEF
 - Plays a critical role in converting plans and intentions into specific sequences of motor acts that shift the focus of attention
 - Selects and sequences the individual acts needed to navigate and explore the landscape
 - Limbic (cingulate gyrus)
 - Critical role in identifying the motivational relevance of extrapersonal events
 - Sustaining level of effort during the execution of attentional tasks
- Phenomenon of spatial attention is not sequentially additive product of perception, motivation, and exploration but an emergent, relational quality of the network as a whole

Acute Confusional State

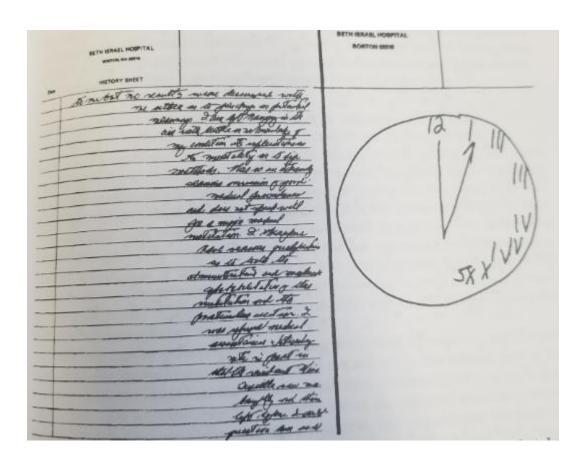
Symptoms

- Defective vigilance
- Attention either wonders aimlessly or is inappropriately focused on irrelevant stimuli
- Skilled behavior (e.g., using utensils) vulnerable to interference, impersistance, perseveration
- Stream of thought loses coherence due to frequent intrusions from competing thoughts, sensations
- Hallucinations
- Delusions
- Agitation
- Disorientation
- Dysgraphia, Dyscalculia
- Faulty judgment, Blunted insight

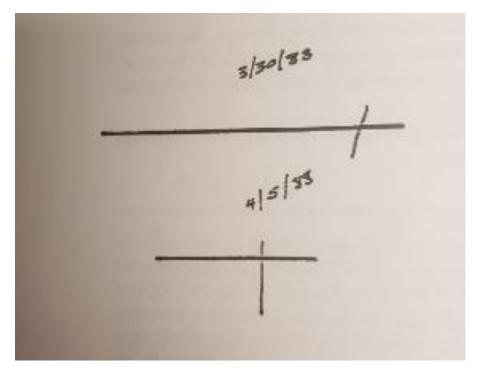
Acute Confusional State

Toxic-Metabolic Encephalopathies

- Interference of nutritional requirements, acid-base balance, electrolyte environment
- Hepatic failure, anemia, hyperglycemia, anoxia, acidosis
- Withdrawal from alcohol, barbiturates, opiates, psychoactive drugs, hypnotics, sedatives, tranquilizers, antidepressants
- Mostly due to neurotransmitter interference cholinergic


• Environmental stressors in vulnerable individuals

- Sensory deprivation
- Immobilization (treatment for multiple trauma)
- Interference with circadian rhythms (intensive care units)
- Elderly, preexisting neurological diseases


Acute Confusional State

- Multifocal brain lesions
 - Meningitis, anoxia, fat embolism, closed head injury
- Epilepsy/Seizures
 - Disrupts electrical or structural integrity of the ARAS
- Space-occupying lesions
- Focal lesions
 - Parahippocampal-fusiform-lingual gyri, posterior parietal, inferior prefrontal regions interfere with top-down modulation of attentional matrix

- Behave as if half of the universe does not exist
 - May not shave, groom, dress one side
 - Fail to eat food on one side
 - Omit reading the left half of words
 - Leave a very wide left margin
- Not a disorder of seeing, hearing, or moving.
- Disorder of looking, detecting, listening, and exploring

- Line Bisection Test
 - Neurologically intact people place midpoint slightly left of midline
 - Left neglect pts will place it to the right
 - Degree of rightness depends on line length
 - Suggesting that the sensory information about the total line is processed
 - Neglect happens post-sensory -> internal representation is affected

- Patients asked to retrieve landmarks when taking one perspective looking toward the cathedral along Piazza del Duomo in Milan
 - Able to recall landmarks on right side
 - When asked to take the other perspective, they again recalled right side, which previous were on left and not recalled
 - Failure of internal attentional spotlight to highlight left side features unless they are on the right side of the minds eye

Neglect Dyslexia

- Don't read words on the left
- Left part of words are not read
- Sometimes respects morphological boundaries and lexical structure
- Nonwords more prone to neglect than real words
- Suggest the whole word is encoded but neglect is superimposed onto the mental representation

- Neglected items are processed implicitly
 - Subject shown two identical line drawing of houses, one had flames on the left
 - Subject reported no difference between them
 - When asked which one they'd want to live in they selected the one without flames but could not articulate why
 - Subject shown 2 identical bank notes, one was torn on the left
 - Reported no difference between them
 - When asked which one they preferred, select the intact one, could not articulate why

- Functional anatomy of Unilateral Neglect
 - Right-side lesion
 - Lesions on the right side cause left neglect
 - Left lesion typically do not cause right neglect
 - Theory is that right side -> bilateral attention, whereas left side -> only right side attention
 - Lesion was previously believed to be related to only inferior parietal lobule
 - Attentional network includes frontal lobes, cingulate gyrus, striatum, and thalamus

- Affect 3-7% of school-aged children
- In order to be diagnosed symptoms bust have occurred before the age of 7
- 3 Subtypes
 - Inattentive
 - Girls more than boys
 - Easily distracted
 - Forgetful, misplacing items
 - Difficulty focusing/ staying on task
 - Hyperactive
 - Boys more than girls
 - Fidgety
 - Impatient
 - Impulsive
 - Overly talkative
 - Combined/Mixed

Affective Components

- Lack of emotional control
- Poor/inappropriate motivation

Attentional/Cognitive Components

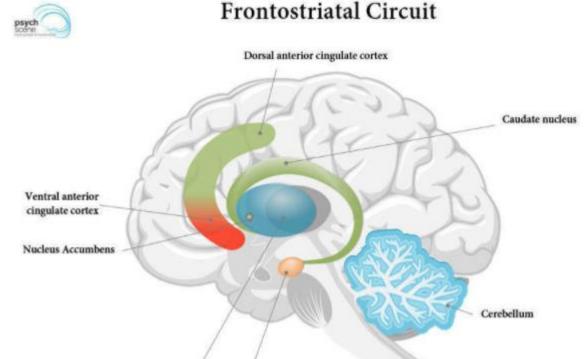
- Problem solving
- Planning (including time estimation, temporal foresight)
- Orienting
- Alerting
- Cognitive flexibility
- Sustained attention
- Response inhibition
- Working memory

Motor Components

- Poor motor coordination
- Poor handwriting
- Clumsiness

- Strong genetic contribution
 - Hereditability between 60-90%
 - Genes implicated related to regulation of neurotransmitters
- Environmental factors
 - Prenatal factors
 - Maternal alcohol exposure
 - Structural brain anomalies in cerebellum
 - Children frequently hyperactive, disruptive, impulsive, increased risk of psychiatric disorders
 - Maternal smoking 2.7 fold increase risk for ADHD
 - Peri-natal factors
 - Very low birth weight
 - Pregnancy & birth complications
 - Post-natal factors
 - Nutritional deficiencies (essential fatty acids omega 3 & omega 6)
 - Deprivation of social environment

Frontostriatal Network


 Lateral prefrontal cortex, dorsal anterior cingulate cortex, caudate nucleus, putamen

Hypoactivity

 Anterior cingulate, dorsolateral prefrontal, inferior prefrontal, orbitofrontal, basal ganglia, thalamus, & parietal cortex

Reduction in volume

 Total cerebral volume, prefrontal cortex, basal ganglia, dorsal anterior cingulate, corpus collosum, & cerebellum

Putamen

Delay in brain maturation

Grey matter peaks 3 years delayed – most prominent in prefrontal regions

White matter abnormalities

- Corpus collosum, inferior parietal, occipito-parietal, inferior frontal, inferior temporal cortex
- Decrease the speed of neuronal communication

- Dysregulation of noradrenaline/ norepinephrine and dopamine neurotransmitter systems
 - Methylphenidate
 - Increases dopamine signaling
 - Blocking DA reuptake
 - Increases extra-cellular levels
 - Disinhibition of receptors
 - Inhibits norepinephrine reuptake
 - Dextroamphetamine
 - Increase synaptic activity of DA & NE
 - Increases release into synapse
 - Decrease reuptake

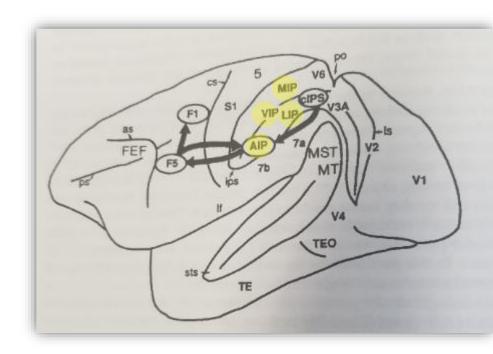
- EEG typically reveals frontal slowing -> high amplitude theta (4-8Hz)
 - SMR training to decrease theta and increase beta
- Sometimes alpha/theta train is used
- ADHD EEG profiles have been found with excesses of delta, theta, alpha, and beta
 - One size does not fit all

Thank You

The neurobiological basis of ADHD (nih.gov)

Frontiers | Cognitive Neuroscience of Attention Deficit
Hyperactivity Disorder (ADHD) and Its Clinical Translation |
Human Neuroscience (frontiersin.org)

Neurobiology of Attention Deficit Hyperactivity Disorder (ADHD) - A Primer (psychscenehub.com)


Neurobiology of Attention Deficit/Hyperactivity Disorder | Pediatric Research (nature.com)

- Inferipor frontostrial circuit
 - Less activation in motor inhibition tasksin the circuit to prevenmt motio
 - Control movement SMA interior cingulat cortext, right striatum, left thalamus
 Problem with dopamine
 - Reduced activation in right dorsal inattentive
 - Overall decrease in activity

- Decision making
- Movement
- Problem with communication with frontal lobe and motor control of parietal attention areas
- Medications
 - Adderol Ritalin
 - Stimulants
 - Increase availability norephinephine and dopamine
 - Sideeffects difficulty sleeping loss of apeititite headaches

- Interfere with bottom-up ARAS
- Interference of top-down frontal, parietal, limbic
- mul;trifocal damage distributed throughout the cerebral cortex that influences domain-specific attentional modulations

- There is not a unitary spatial map, there are several mappings of behaviorally relevant targets in terms of motor strategies
 - MIP
 - Reach toward a visual target
 - AIP
 - Connected to premotor area
 - Coordinated manual grasping of complex visual objects
 - VIP
 - Integrate the process of grasp under visual guidance
 - LIP
 - Parietal reach area
 - Visually guided arm movements
 - Manual grasping
 - Tactile exploration

- Limbic components
 - Cingulate
 - Anterior
 - Global attentional engagement
 - Dorsal anterior
 - Responds to behaviorally relevant cues & during the planning and execution of reaching movements
 - Posterior
 - Differentiated lateralized shifts of motivational relevance & focalized attention
 - Direction of displacement of eye movements rather than location of target
 - Activity is relative to last eye movement not absolute depending on target location

- Where is the selector?
 - At first it was believed to at very low levels in the brainstem
 - Cocktail party effect
 - Network including neocortex, thalamus, brainstem
 - Mental arithmetic & audityory distractors
 - Decreased activity in auditory cortices