Round 20: Synaptic Transmission & Intro to Neural Networks

05/06/2021 Kristy Snyder Colling, PhD

Neuron

- Cell body or Soma information processors
- Dendrites are input devices
- Axons convey information from the soma to the terminal buttons
- If it is <u>myelinated</u>, signals are transferred more quickly
 - Loss of myelination disrupts communication
 - Multiple Sclerosis
- Synaptic Vesicles Store neurotransmitters
 - Released by action potentials
 - Received by receptors on post-synaptic dendrites
 - Facilitates electrical activity of the postsynaptic neuron

- Electrical potential the amount of work necessary to separate two opposite charges particles
- In neurons potential exist by virtue of the charge that exists on either side of the cell membrane
 - For a resting neuron there is more sodium (Na+) on the outside in the extracellular fluid and more potassium K+ on the inside in the cytoplasm

Ions only have the potential to move through the channels - resting potential

- Sodium channels are usually closed
- Potassium channels are usually open, allowing for potassium to leave the cell making the charge on the inside negative
- The result is increasing pressure on sodium to enter the cell to level out the concentration gradient and electrostatic charge
- However, the status of these channels is mediated by signaling molecules -> Neurotransmitters

- When neurotransmitters are released, they are received by ionotropic receptors
- Have one of two effects on the post-synaptic neuron:

Makes inside of the cell more negative

- The polarization opens or closed voltage-gated ion channels
- If the membrane potential changes as a result of the influx or outflux of ions such that it reaches threshold, it will trigger an action potential

voltage-gated potassium channels then open as well

- The result of the action potential is to open voltage gated calcium channels
- Calcium is a messenger that trigger vesicles to bind with membrane and release neurotransmitters

- This occurs neuron by neuron to convey a message
- Chemistry occurs in picoseconds (trillionths of a second)

1) axodendritic

axon terminal connects to a dendrite on the postsynaptic neuron

2) axosomatic

axon terminal connects to the cell body on the postsynaptic neuron

3) axoaxonal

axon terminal connects to the axon on the postsynaptic neuron

4) dendrodendritic

dendrite connects to a dendrite on the postsynaptic neuron

Brain Function Theories

Holistic Models

- All regions are mutually interconnected and have equipotentiality
- Cognition results from simultaneous activity among all regions acting as a whole
- Damage to one area, the network redistributes workload
 - But the quantity of work accomplished is reduced
- Evidence against from brain injury/lesions demonstrating localization of some functions

Brain Function Theories

- Localizationist Models
 - Various functions are carried out by discrete independent regions
 - Damage to one area results in complete lost of the associated function

Brain Function Theories

Associationist Models

- Brain is organized into parallel distributed networks around cortical epicenters
- Primary & motor functions are largely localized (blue areas)
- Higher functions are distributed within largescale networks (peach areas)
- Lesion causes functional loss of the damaged area and partial dysfunction to connected regions

Neural Networks

Meynert (1885)

- Proposed a network involved in learning to avoid burning oneself
- Child touches a flame, the sensation of burning triggers a spinal reflex to withdraw the hand
- The sight of the flame, the pain experienced, and the hand withdrawal is then conveyed to cortical centers (A & B)
- Area C believed to be an associative center convergence of sensory inputs & translation into motor planning
 - Just seeing a flame will trigger memory of the event -> avoiding flame in the future

Mesulam's Large-scale Networks

- A <u>Language Network</u> connecting Broca's & Wernicke's
- B <u>Face-Object Identification Network connecting</u> occipito-temporal & temporopolar regions
- C <u>Executive Function Network</u> connecting lateral prefrontal, orbitofrontal, & posterior parietal cortex
- D <u>Spatial Attention Network</u> connecting dorsal posterior parietal cortex, frontal eye field, & cingulate gyrus
- E <u>Memory-Emotion Network</u> connecting hippocampal-entorhinal & amygdaloid complex

Pathways

Association Fibers

- Connect brain regions within a hemisphere
- Play a role in language, visuo-spatial processing, memory, emotion, praxis
 - Praxis enactment of a complex motor skill (apraxia - inability to perform learned /familiar movements on command)

Commissural Fibers

- Connect brain regions between hemispheres
- Projection Fibers
 - Connect cortex and subcortical regions

Association Pathways

- Uncinate Fasciculus
 - Connects anterior temporal lobe with medial & lateral orbitofrontal cortex
 - Part of extended limbic system
 - Involved in memory, emotions, and language
- Arcuate Fasciculus
 - Left hemisphere connects Broca's & Wernicke's areas
 - Involved in language, praxis, and verbal working memory
 - Right hemisphere involved in visuospatial processing, prosody, semantics

Association Pathways

- Cingulum
 - Connects anterior temporal lobe to orbitofrontal cortex
 - Part of the limbic system
 - Involved in attention, memory, emotion
- Inferior Fronto-Occipital Fasciculus
 - May play a role in reading, attention, visual processing
- Inferior Longitudinal Fasciculus
 - Connects occipital and temporal lobes, connecting visual area to temporopolar, amygdala, and hippocampus
 - Plays a role in object & face perception,
 Reading, visual memory, and language

Commissural Pathways

- Corpus Collosum
 - Largest fiber tract connects the two hemispheres
 - Anterior portion (Genu)- connects prefrontal & orbitofrontal regions
 - Ventral portion (Body) connects precentral frontal & parietal regions
 - Posterior portion (Splenium) connects occipital lobes
- Anterior Commissure
 - Connects the ventral temporal lobes, amygdala, and olfactory bulbs

Projection Pathways

Fornix

- Connects medial temporal lobes, hippocampus, mamillary bodies, & hypothalamus
- Part of the limbic system involved in memory

Interior Capsule

- Contains ascending fibers from the thalamus
- Descending fibers from fronto-parietal cortex to subcortical nuclei including basal ganglia, brain stem, & spinal cord
- Conveys sensory information to the cortex and control movement

Pathway Disorders

- Auditory hallucination in Schizophrenia
 - Hyperfunction locally in Broca's & Wernicke's but hypoconnectivity between them
- Visual Hypoemotionality
 - Visual-limbic disconnection affecting the inferior longitudinal fasciculus fibers
- Unilateral Neglect
 - Lesion of inferior parietal cortex, inferior frontal lobe, superior temporal cortex, occipital lobe connecting tracts

Pathway Disorders of Frontal Lobe

Motor Syndrome

- Lesions to primary motor cortex & its connections -> contralateral motor deficits of limbs or face
- Lesion to arcuate fasciculus -> ability to execute learned purposeful movements
- Lesions to frontal eye field and its connections -> gaze abnormalities
- Lesions to medial frontal lobe and its callosal connections -> anarchic hand syndrome
 - one hand acts autonomously as if having its own will
- Abnormalities along the precentral region can cause Jacksonian march
 - Partial seizure with succession of involuntary movements of fingers and arm as epileptic activity spreads along the motor homunculus

Pathway Disorders of Frontal Lobe

- Cognitive Syndrome
 - Dorsolateral prefrontal cortex connected to parietal cortex, temporal lobe, and basal ganglia by the cingulum, superior longitudinal fasciculus, arcuate fasciculus, and internal capsule
 - Lesions to dorsolateral
 - Memory deficit
 - Poor serial motor sequencing
 - Response inhibition
 - Abstract thinking
 - Goal-directed behavior (planning, rule learning, hierarchical organization, switching)
 - Easily distractable
 - Slowed mental flexibility

Pathway Disorders of Frontal Lobe

Abulic Syndrome

- Medial prefrontal cortex is connected to medial parietal, occipital, and temporal lobe by the cingulum and superior longitudinal fasciculus
- Lesions manifest in apathy, loss of motivation, reduced goal-directed behavior, reduced ability to sustain effort

Behavioral Syndrome

- Orbitofrontal cortex is connected to the anterior temporal and ventral temoro-occipital cortices via uncinate and inferior fronto-occipital fasciculi
- Medial portion of orbitofrontal connected to dorsolateral prefrontal via cingulum
- Lesions manifest in personality changes, disinhibition, social inappropriateness, sexual preoccupation
 - Automatic imitate examiners movements without being told to do so
 - Reduced empathy, impulsivity, distractibility, depression, mania

Pathway Disorders of Parietal Lobe

- Disorders of Somatosensory and Tactile Function
 - Post-central gyrus (primary somatosensory) connected to thalamus
 - Lesions -> impaired pain sensation, temperature touch, vibration
 - May feel tingling, burning, numbness, pins & needles
 - Altered proprioception (ability to detect joint motion & limb position)

- Disorders of Motility
 - Parietal regions connect with occipital lobe & frontal lobes via superior longitudinal and arcuate fasciculus
 - Lesions of precuneus & superior parietal lobe may manifest as uncoordinated movements that lack speed, smoothness, appropriate direction
 - Inability to carry out complex visually guided movement, skilled movements, tool use
 - Unable to put together one- or two-dimensional objects

Pathway Disorders of Parietal Lobe

- Disorders of Spatially guided Attention neglect
- Disorders of Symbolic Thought and Memory
 - Impaired manipulation of numbers in mathematical operations, impaired reading, writing
- Complex Visual Defects
 - Inability to recognize objects or scenes, derealization, out-of-body experiences
 - Balint syndrome (asomatognosia) optic ataxia

Thank You

ligand-gated channels

open when a specific neurotransmitter binds

voltage-gated channels

respond to changes in membrane potential

voltage = -70 mV → voltage = -50 mV

