Round 2: The Somatosensory System

11-20-2020

Kristy Snyder Colling, PhD

If a tree falls in the forest and there's no one around to hear it, does it make a sound?

No, when a tree hits the ground it creates vibrations. A brain is necessary to transform pressure waves into a sound.

Colors, tones, smells, and tastes do not exist in the universe outside of a brain. They are mental constructs.

Sensation – Receiving information from the environment

Transduction – Stimulus is picked up by a receptor (e.g., mechanical, thermal, chemical, etc.) converted into electrochemical energy (i.e., action potentials) and relayed to the central nervous system by projection neurons.

Neuronal Encoding – series of action potentials

Information Attributes

- Modality (e.g., vision, hearing, touch, taste, smell)
- Intensity
- Duration
- Location

Information Communicated

- Within a single neuron by mean impulse activity or latency (i.e., interval between impulses)
- Group of neurons by number or distribution of neurons

Event-related Potential (ERP) – measured brain response as a direct result of sensory, cognitive, or motor event.

Auditory evoked potentials

Four Somatosensory modalities:

- 1. Proprioception –
- Sense of body movement & position.
- Mechanical displacements of muscles and joints.

Four Somatosensory modalities:

2. Thermal/Temperature –

- Heat respond to 32-45°C (90-113°F)
- Cold respond to 1-20°C below normal skin temp of 34°C (93°F)

Four Somatosensory modalities:

- 3. Pain Tissue damaging stimuli
- Nociceptors (Latin Nocere "to injure")
- Mechanical sharp objects
- Thermal above 45°C (113°F)
- Polymodal mechanical, heat, chemical

Four Somatosensory modalities:

- 4. Touch –
- Mechanical stimulation of body surface

	Placement	Resolution	Туре	Function
Merkel Receptor	Superficial	Fine	Slow	Pressure, Position, Shape, Edges
Meissner Corpuscle	Superficial	Fine	Rapid	Indentation, Most Sensitive – Light Touch
Ruffini Corpuscle	Deep	Coarse	Slow	Skin Stretching, Movement, Finger Position, Object Slippage
Pacinian Corpuscle	Deep	Coarse	Rapid	Timing, Vibration, Texture

Dorsal column-medial lemniscus pathway

2. Anterolateral pathway

1. Dorsal column-medial lemniscus pathway

Dorsal Column-Medial Lemniscus Pathway

- Relays information about tactile sensation including touch, vibration, and limb proprioception
- Series of relay nuclei
 - 1. Peripheral axons
 - Dorsal root ganglion
 - Dorsal column
 - Second-order neurons in dorsal column
 - Cross midline in Medulla
 - 6. Brain Stem
 - 7. Thalamus synapse onto thirdorder cells in ventral posterior medial & Lateral nuclei
 - 8. Primary somatosensory cortex in postcentral gyrus of parietal lobe

Anterolateral Pathway

- Relays information about pain and temperature
- Dorsal horn of spinal cord -> reticular formation of pons & medulla -> thalamus
 - Reticular Formation Arousal
 - Pons & Medulla Autonomic system that regulates involuntary functions (e.g., blood pressures, respiration)

2. Anterolateral pathway

(Tactile)

Dorsal column-medial lemniscus pathway

Anterolateral pathway

(Pain)

Sulcus – valley Gyrus - hill

Brodmann's Areas -

- Regions of the brain that are distinguishable based on their cellular composition.
- Often the <u>physical differences</u> in cell make-up correspond <u>to functional differences</u> such that different areas process different kinds of information or the same information differently.

- Primary basic processing of most elemental input (e.g., lines)
- Secondary/Association elaborative processing (e.g., shapes, objects)
- Association/Heteromodal Integrative processing (i.e., how you feel about an object, memories of the object)

Brodmann's Areas

More complex and nuanced processing.

Larger receptive fields as multiple cells converge onto smaller numbers of cells (integrative)

Somatosensory Cortices

- 1. Initial processing with sharp representations
 - Area 3a Muscle stretch receptors. Edge and position
 - Area3b Size and shape. Projects to Areas
 1 & 2
- 2. Slightly more abstract
 - Area 1 Texture
 - Area 2 Motion, direction, orientation
- 3. Integrate Information
 - Areas 5 & 7

Somatotopic Map - projection of body surface onto brain area

Wade Marshall experiments (1930s)

- Cats and monkeys
- Touch a specific part of the body surface and produce an evoked potential
- Evoked potentials recorded signals that represent summed activity of thousands of cells

Wilder Penfield

- Pts with epilepsy and other brain disorders
- When a point on the cortex is stimulated you perceive it on the corresponding receptive field on your skin.

Two-Point Threshold

 Minimum distance at which two points can be perceived as separate

Measures the distance between two receptive fields

 Finger tips have ~2,500 receptors per square centimeter. Receptive fields are ~3-4mm

Trunk receptive fields are ~100x larger

Sensory

neurons

Perception

of touch

of one point

Skin surface

Sensory

neuron

