Round 7: Voluntary Movement, Cerebellum & Basal Ganglia

01/22/2021

Kristy Snyder Colling, PhD

3 Movement Stages

- 1. Identify/localize target in space
- 2. Select a plan of action
 - Which body parts have to move? How?
 - Temporal sequence of tendon & joint movements, forces used, joint angles
 - Counter movements to offset postural requirements
- 1. Execute movement

Step 1: Target Localization

- [Right] Posterior Parietal region (Brodmann's Areas 5 & 7)
 - Responsible for processing spatial information
 - Lesions
 - Unable to attend to a region in space to act -> can't localize objects in space
 - Can't recognize objects placed in the hand without vision
 - When drawing a clock they will put all of the numbers on one side and not notice that this is a problem

Cingulate Gyrus (24) Limbic system -Motivation

Step 2: Action Plan

- Supplementary Motor Area & Premotor Area (Brodmann's Area 6)
 - Plans for complex movement sequences
 - Electrical stimulation evokes coordinated contractions at more than 1 joint.
 - Activation in SMA when rehearsing complex movements
 - Makes 2 plans
 - 1 for movements
 - 1 for posture adjustments
 - SMA lesions impair bimanual movements and orienting hand movements to prepare to grasp an object
 - Premotor lesions impair ability to develop an appropriate strategy for movement

Step 3: Movement Execution

- Primary Motor Area (Brodmann's area 4)
 - Responsible for initiation and triggering movement
 - Codes for simple movement sequences
 - Electrical stimulation evokes very specific movements, sometimes of precise muscle fibers
 - Specific neurons codes for force exerted by specific muscle fibers
 - Different cells are responsible for extension and flexion
 - Populations of neurons code movement direction
 - Common movements made for different reasons activate different neurons
 - Arm movement to reach for an object vs making the same movement in an outburst of anger
 - Trained bite response vs chewing

The Cerebellum

- Regulates movement by monitoring and compensating for errors (i.e., if actual movement deviates from intended movement).
 - Monitors <u>internal feedback</u> (Corollary Discharge)
 - Receives information about movement plans from regions responsible for programming and execution of movement
 - Monitors <u>external feedback</u> (*Reafferent Feedback*)
 - Receives information coming from the periphery about movements
 - Projects to descending motor systems

Spinocerebellum termediate hemisphere Cerebrocerebellum (lateral hemisphere) Fastigial Inter- nuclei Dentate posed nucleus nuclei Vestibulocerebellum To motor and premotor cortices Motor planning

Cerebrocerebellum

- Receive information from cortex about intended movement
- Sends information about calculated motor plan to motor areas
- Deep cerebellar nuclei Dentate
- Responsible for movement initiation, planning, and timing

Cerebrocerebellar Tract – Planning of movement

- Calculates specific motor plans re: precision control of rapid limb movements & task that require fine dexterity
 - May be related to a cognitive ability of setting up an "internal clock" – motor deficits in timing but also deficits in judgment of elapsed time
- Receives most input from sensory & motor cortices and from premotor & posterior parietal cortices
- Lateral zone of cerebellum -> dentate nucleus -> superior cerebellar peduncle -> thalamus -> motor & premotor cortices
- Lesions produce
 - Delays in movement initiation & termination
 - Tremor at the end of movement
 - Disorder in the temporal coordination of movements at multiple joints
 - Disorder of spatial coordination of hand & fingers

Cerebellar Homunculi

- Vermis receives information from head, neck, & trunk
- Intermediate zone receives information from limbs

Areas 4 & 6

Spinocerebellum

- modulates cortical commands for movement through brain stem and descending systems
- Interposed Nuclei (Emboliform & Globose)
 in Intermediate zone
 - Receives spinal afferents -> red nucleus -> motor cortex
 - Controls ongoing motor control of limbs
- Fastigial Nuclei in Vermis
 - Receives information from vestibular system, head, neck, trunk, visual & auditory inputs -> Vestibular nucleus -> reticular formation -> motor cortex
 - Controls ongoing motor control of head, neck, trunk

Decussation of superior cerebellar peduncle Globose nucleus Reticulospinal tracts Vestibular nuclei Spinal cord Vermis (Head/Neck/Trunk)

Spinocerebellar Tract -

- Controls
 - Ongoing execution of movement
 - Feedback adjustments
 - Regulates muscular apparatus to compensate for small variations in loads encountered during movement & to smooth out tremor
- Responds to proprioception, touch, & pressure
- Relies on information from cortical motor areas about intended motor commands and on feedback from the spinal cord about evolving movements to correct deviations from intended movement
- Distinct Pathways
 - Dorsal sensory events & information about evolving movements
 - Ventral internal feedback from interneurons that are driven by central commands

Vesibulocerebellum – receives inner ear information

Flocculonodular Lobe

- Path
 - Inner-ear -> Medulla -> Flocculonodular Lobe
 - Also receives visual input via LGN
- Oldest part cerebellum (evolved first)
- Governs eye movements & body equilibrium during stance and gait

- Information comes in through Inferior Olives via <u>climbing fibers</u>
 - Go directly to deep cerebellar nuclei (DCN)
 - Releases excitatory neurotransmitter aspartate which stimulates DCN
 - Also ascends to stimulate Purkinje cells
 - Releases inhibitory neurotransmitter GABA synapse onto DCN
 - Controls overshooting (neural sharpening)

- Information comes in from sensory pathways via mossy fibers
 - Go directly to DCN
 - Releases excitatory neurotransmitter glutamate which stimulates DCN
 - Also ascends to granular layer & synapse to granule cells & golgi cells (inhibit granule cells)
 - Granule cells ascend to molecular layer to parallel fibers
 - Stimulate Purkinje, Stellate & Basket cells
 - Stellate & Basket cells inhibit Purkinje cells

Cerebellar Damage

- Role in classical conditioning -prevent acquisition & retention of conditioned eyeblink
- Gordon Holmes studied soldiers who received gunshot wounds to the cerebellum in WW1
 - Hypotonia diminished resistance to passive limb displacements & delay in response inability to stop limb from rapidly overshooting target
 - Ataxia
 - delay in initiating responses, errors in range, force, rate & regularity
 - cannot sustain rhythm in alternate tapping
 - don't brace against forces generated by movement
 - Tremor at end of movement
 - Damage & effect ipsilateral
 - Vermis lesions
 - disturb trunk movements
 - problems w/ speech (e.g., slur or singsong quality)

The Basal Ganglia

- Caudate Integrates spatial information and motor behavior. Also, part of the reward system and helps selection actions based on changing values of goals
- Putamen Extent and amplitude of movement
- Globus Pallidus Inhibitory action that works to allow smooth movements (i.e., reduce tremors and jerks)
- Substantia Nigra GABA & dopaminergic pathways, learning observation of environment and location in space (spatial learning), movement timing
- Subthalamic Nucleus action selection, role in impulsive choice between two equally rewarding stimuli

Basal Ganglia do not connect directly to spinal cord

Involved in higher-order, cognitive aspects of motor control (e.g., planning & execution of complex motor strategies)

Cerebellum connects directly to spinal cord

Directly regulates movement execution

The Basal Ganglia play a role in a number of Circuits and pathways

Oculomotor Circuit

- Control saccadic eye movement
- Caudate -> superior colliculus -> frontal eye fields -> thalamus

Dorsolateral Prefrontal Circuit

- Memory re: spatial orientation
- Caudate -> thalamus -> dorsolateral prefrontal cortex

Lateral Orbitofrontal Circuit

- Changing behavioral set
- Ventromedial caudate -> lateral orbitofrontal cortex

The Direct Pathway

Increase Motor Activity

The Indirect Pathway

Decrease Unwanted Motor Activity

The Nigrostriatal Pathway

Modulate/Amplify Direct & Indirect Pathways

Parkinson's Disease

- James Parkinson (1817)
- Rhythmical tremor at rest, rigid tone, difficulty initiating movement, slow execution of movement
- 80% of dopamine is in the BG
- Degeneration of nigrostriatal pathway, up to 90% of dopaminergic neurons degenerate
- Traditional treatment L-DOPA -> dopamine
- Deep brain stimulation

Huntington's Disease

- George Huntington (1872)
- Extremely hereditable (50% chance), onset in 40s/50s, death 15-20 years after onset
 - Most of the cases on the east coast have been traced back to two ancestors who emigrated from Suffolk, England to Salem, MA in 1630
 - Traced through 12 generations (300 years), expressed in each generation
- Onset: Absent-mindedness, irritability, depression, fidgeting, clumsiness, sudden falls
- Mid-disease: Chorea, dementia, slurred speech
- End-stage: Speech eventually stops, confinement to wheelchair, cognitive functions/ability to reason fails
- Loss of cholinergic & GABAergic neurons in caudate & putamen (chorea), dorsolateral prefrontal (cognitive symptoms)
- No treatment available

- ADHD: Frequently reduction in volume & activation in:
 - prefrontal cortex
 - Caudate
 - Ventral striatum
 - Globus pallidus
 - cerebellar vermis
- Reduced density of dopamine receptors
- Projections from premotor -> basal ganglia
 -> cerebellum guide behavioral output
 (hyperactivity/impulsivity)
- Behavior sequencing (dyslexia)

